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PHYSICAL AND NUMERICAL MODELLING OF THE
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(Received 6 July 2001, and in ,nal form 15 November 2001)

The planar equations of motion for a tapered #y line subjected to tension, bending,
aerodynamic drag, and weight are derived. The resulting theory describes the large
non-linear deformation of the line as it forms a propagating loop during #y casting. A cast is
initiated by the motion of the tip of the #y rod that represents the boundary condition at one
end of the #y line. At the opposite end, the boundary condition describes the equations of
motion of a small attached #y (point mass with air drag). An e$cient numerical algorithm is
reviewed that captures the initiation and propagation of a non-linear wave that describes
the loop. The algorithm is composed of three major steps. First, the non-linear
initial-boundary-value problem is transformed into a two-point boundary-value problem,
using "nite di!erencing in time. The resulting non-linear boundary-value problem is
linearized and then transformed into an initial-value problem in space. Example results are
provided that illustrate how an overhead cast develops from initial conditions describing
a perfectly laid out back cast. The numerical solutions are used to explore the in#uence of
two sample e!ects in #y casting, namely, the drag created by the attached #y and the shape of
the rod tip path.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

A major goal in the sport of #y "shing is the presentation of an arti"cial #y to a feeding "sh
by casting a #y line. Pro"cient #y casters often learn through considerable practice and by
instruction as provided in courses, books and videos on #y casting techniques; see, for
example, [1] or [2]. As noted in [2], &&Whenever I question my students about what aspect
of #y "shing they want to learn, the majority always answer that more than anything else,
they want to become good casters. It is a shame that only a relatively small percentage of
anglers will eventually become "rst-rate casters.'' While #y casting instruction and
techniques vary, they often stress the importance of understanding basic mechanics of the
#y line and the #y rod during casting.
Consider a standard overhead cast as illustrated in Figure 1. These idealized sketches

illustrate four stages of the forward cast portion of an overhead cast that starts with the #y
line laid out horizontally behind the caster at the conclusion of a back cast; see Figure 1(a).
The caster then rotates the #y rod clockwise, accelerates the #y line, and then abruptly stops
the rod as illustrated in Figure 1(b). From this point onwards, the end of the #y line
attached to the rod tip remains stationary and a loop necessarily forms between the moving
(upper) portion of the #y line and the stationary (lower) portion of the #y line; see
Figure 1(b). From the perspective of dynamics, this loop represents a non-linear wave that
propagates forward as shown in Figure 1(c) until it reaches the end of the #y line where the
loop turns over. This "nal turnover occurs on or near the surface of the water and the cast is
complete.
022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. The forward cast of an overhead cast: (a) perfectly laid out back cast; (b) just after stop of forward cast;
(c) loop propagation; (d) completion of cast (loop turnover).
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The equipment required to achieve such a cast has evolved through years of meticulous
experimentation and designs have pro"ted greatly from new materials introduced from
other industries [3]. To date, however, the #y "shing industry has not fully exploited the use
of computer-based simulation for the design of #y rods and #y lines, or for evaluating #y
casting techniques and instruction methods. The opportunity for doing so is recognized, for
example, by Phillips [3] who sees a &&few innovations that could be on the horizon'' that may
include &&mathematical models of various types of casting strokes, capable of producing
casting simulations with speci"c #y rod designs'' and &&simulation of #ycasting, showing how
changes in rod design a!ect the geometry of the cast'' (among the other innovations that he
lists). The major goal of this paper is to foster innovations such as these that may result from
the computer-based simulation of #y casting.
A limited amount of published research is available on the mechanics of #y casting and

much of this is referenced on a website by Spolek [4]. Among the technical papers
referenced therein, three studies [5}7] are most closely related to this work as they present
models for #y line dynamics. Spolek [5] introduces an idealized model of the #y line for an
overhead cast by prescribing a priori the geometry of the line. The line is subdivided into
three segments consisting of two straight and horizontal segments for the upper and lower
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portions of the loop and one semi-circular segment for the front of the loop (as might be
suggested by the sketch in Figure 1(c)). A work}energy balance is used to study the
propagation of this ideal &&semi-circular loop'' and the key e!ects caused by tapering� the #y
line and by air drag are studied. A re"ned drag model is subsequently o!ered in [6] for
essentially the same #y line model. In [7], Robson relaxes assumptions in [5, 6] for an ideal
semi-circular loop by introducing a multi-body approximation of the continuous #y line.
The #y line is modelled as a long chain of particles connected by small massless and rigid
rods. The rods are pinned connected and relative joint angles are introduced as the model
degrees of freedom. This approach leads to a large-degree-of-freedom lumped parameter
model that can be integrated upon prescribing the motion of the tip of the #y rod. Example
simulations illustrate good qualitative agreement for the geometry and propagation of
a loop when compared to video images of an overhead cast.
The lumped parameter model in [7] requires the analyst to select the number and length

of each &&rod'' as well as the mass of each lumped &&mass''. These parameters are not known
from the description of the #y line and they can also be chosen in a multitude of ways
leading to ad hoc formulations. Moreover, the model does not account for the bending
sti!ness of the #y line, although bending sti!ness will play an increasingly greater role when
the tension in the #y line approaches zero (and in regions of compression). Note that the
&&stop'' of the rod in the forward cast produces a rapid deceleration of the rod tip, which is
likely to lead to a signi"cant reduction in the tension of the #y line in this region. In
addition, the tension at the end of the #y line is expected to be rather small during the loop
turnover. Therefore, models of #y line that lack bending rigidity may be unable to resolve
the mechanics in the critical low-tension regions associated with loop formation and loop
turnover.
A natural alternative to a lumped parameter model of a #y line is a continuummodel that

draws from the literature on cable dynamics [8]. The distributed mass and the taper of a #y
line can be readily incorporated in a continuum model using available #y line design data
(e.g., taper tables). In doing so, one must again recognize the key role played by bending
sti!ness in regions where the tension approaches zero or is negative (compression). This
point is discussed in [9] where it is shown that a model of a perfectly #exible cable becomes
ill-posed whenever the tension approaches zero (or is negative). The addition of bending
sti!ness (or other terms with higher order spatial derivatives) renders the problem
well-posed. Models and numerical algorithms have been developed for #uid-loaded cables
(with bending) using "nite di!erencing methods as motivated by ocean engineering
applications; see, for example, [10}12]. Of these, we will adapt and modify the strategy in
[12] for simulating the dynamics of #y casting. The main advantage of this strategy is that
the solution scheme, unlike box methods, does not involve a shooting method, which we
found to be di$cult to use for our application.
The objective of this paper is to establish a new continuum model for #y line dynamics

and to describe a numerical algorithm for simulating #ycasting. The model, which is
presented in section 2, accounts for the principal forces a!ecting #y line dynamics including
#y line tension, drag, self-weight, shear and related bending. This model takes the form of
a very long and non-uniform (tapered) elastica that captures the non-linear dynamic
deformations responsible for loop formation and propagation. The numerical algorithm is
detailed in section 3 and results for overhead casts are reviewed in section 4. Example
simulations are used to explore the in#uence of two sample e!ects in casting; namely, the
drag created by the attached #y, and the shape of path described by the rod tip.
�The term taper refers to the intentional changes in the cross-sectional area of the #y line that signi"cantly
in#uences casting. An example is provided in section 4.
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2. CONTINUUM MODEL

In this section, we derive the two-dimensional equations of motion for a #y line subject to
tension, bending, aerodynamic drag and weight. The mechanical model is that of a long and
non-uniform elastica with very small bending sti!ness similar to that used by Sun [12] to
model low-tension underwater cables. We begin by "rst introducing two reference frames
that are convenient for formulating the theory. We then derive the compatibility equation,
the linear and angular momentum equations, and the constitutive equation that de"ne the
#y line model. Finally, we will specify the initial conditions and the boundary conditions for
the forward cast of a standard overhead cast.

2.1. FRAMES OF REFERENCE

Figure 2 illustrates two reference frames employed in the following derivation. The
inertial reference frame (O, e

�
, e

�
, e

�
) is "xed in space and is the natural choice for describing

the acceleration components and weight of the #y line. The Serret}FreH net reference frame
(M, a

�
, a

�
, a

�
) is a local reference frame attached to the #y line at any point M and is the

natural choice for describing the tension, bending and aerodynamic drag of the line. Here,
a
�
is the unit tangent vector, a

�
is the unit normal vector, and a

�
is the unit bi-normal vector.

The following transformation between the two reference frames is a function of the Euler
angle� shown in Figure 2. Let (z

�
, z

�
) be the components of a vector z in the local reference

frame and let (Z
�
, Z

�
) be the components of z in the inertial reference frame. These

components are related through

�
z
�

z
�
�"L�

Z
�

Z
�
�"�

sin� !cos�

cos� sin�� �
Z

�
Z

�
�, (1)

where L is the associated rotation matrix.

2.2. COMPATIBILITY EQUATION

In developing the equations of motion, we must evaluate derivatives with respect to both
space and time. The spatial derivatives are taken with respect to a Lagrangian coordinate
s that de"nes the arc length along the line as shown in Figure 2. Derivatives will be formed
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with respect to both the local and inertial reference frames as follows. Let z be an arbitrary
vector with the following representation in the local reference frame:

z"z
�
a
�
#z

�
a
�
. (2)

Let Dz/Dt be the derivative of z with respect to time as seen by an observer in the inertial
reference frame. Then [13]

Dz

Dt
"�

dz

dt�
�a��a��a��

#��z, (3)

where (dz/dt)
�a��a��a��

is the derivative of the vector z with respect to time as seen by an
observer in the local reference frame and � is the angular velocity of the local frame of
reference

�"

��

�t
e
�
. (4)

Similarly, the derivative of z with respect to the spatial coordinate s as seen by an
observer in the inertial reference frame is

Dz

Ds
"�

dz

ds�
�a��a��a��

#��z, (5)

where (dz/ds)
�a��a��a��

is the derivative of the vector z with respect to s as seen by an observer
in the local reference frame and � is the curvature vector of the planar curve formed by the
line given by

�"

��

�s
e
�
. (6)

The above results will now be employed in deriving the kinematical quantities required
for formulating the equations of motion. We begin by noting that the unit tangent vector is
given by

a
�
"

�r

�s
, (7)

where r denotes the position of a material point of the line.
The unit normal vector is then given by

a
�
"

1

���
�a

�
�s

. (8)

The velocity vector of a material point is

v"

Dr

Dt
(9)

and the velocity gradient is then

Dv

Ds
"

D

Ds �
Dr

Dt�. (10)



Figure 3. De"nition of the forces and moments acting on the #y line.
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Recognize that the position vector r is a vector-valued function of class C�. Therefore, the
order of di!erentiation in equation (10) can be interchanged:

Dv

Ds
"

D

Dt �
Dr

Ds�. (11)

Equating equations (10) and (11) and employing equations (3), (5), and (7) leads to the
compatibility equation

�v

�s
#��v"��a

�
(12)

that relates the above kinematical quantities.

2.3. LINEAR AND ANGULAR MOMENTUM EQUATIONS

The momentum equations for an in"nitesimal element of the #y line depicted in Figure 3
will now be summarized. Linear and angular momentum balances of this in"nitesimal
element result in

Df

Ds
#F"�

�
A(s)

Dv

Dt
, (13)

Dq

Ds
#a

�
�f"

DH

Dt
, (14)

where it is assumed that no external distributed moments act. Here, f"f
�
a
�
#f

�
a
�
is the

internal force with tension ( f
�
) and shear ( f

�
) components, F"F

�
a
�
#F

�
a
�
is the external

force per unit length, �
�
is the #y line density,A(s) is the (spatially varying) line cross-section,

q"q
�
e
�
is the internal moment, and H"H

�
e
�
is the angular momentum per unit length.

The latter quantity is given by

H"I(s)�, (15)

where

I(s)"
�
�
�D�(s)

64
(16)

for the line of circular cross-section with (spatially varying) diameter D(s).



DYNAMIC BEHAVIOR OF A FLY LINE 561
Expanding equations (13) and (14) using equations (3) and (5) results in

�f

�s
#��f#F"�

�
A(s) �

�v

�t
#��v�, (17)

�q
�

�s
#f

�
"

�H
�

�t
. (18)

2.4. CONSTITUTIVE EQUATION

We now introduce a linear constitutive law for line bending,

q
�
"EJ(s)�, (19)

by employing Kirchho! assumptions for a slender rod. Here, E denotes Young's modulus
for the #y line and

J (s)"
I(s)

�
�

. (20)

2.5. SUMMARY OF FLY LINE MODEL

Equations (6), (12), and (17)}(19) yield a system of seven scalar equations containing seven
unknowns f

�
, f

�
, q

�
, v

�
, v

�
, �, and �. Substituting equation (19) into equation (18) reduces

these to the following set of six equations:

�v
�

�s
"�v

�
,

�v
�

�s
"!�v

�
#

��
�t

,
��
�s

"�, (21}23)

��
�s

"

1

EJ �!f
�
!

�ED�

16
�#

� (I��
�t )

�t �, (24)

�f
�

�s
"�f

�
!F

�
#�

�
A(s) �

�v
�

�t
!

��

�t
v
��, (25)

�f
�

�s
"!�f

�
!F

�
#�

�
A (s) �

�v
�

�t
#

��
�t

v
�� (26)

in the six unknowns (v
�
, v

�
,�, �, f

�
, f

�
).

The "rst three equations (21), (22), and (23) de"ne an inextensibility constraint, the
angular velocity, and the curvature respectively. The remaining three equations (24), (25),
and (26) represent the angular and the two linear momentum equations respectively. These
momentum equations will now be completed by de"ning the external forces per unit length
F
�
and F

�
acting on the #y line by accounting for aerodynamic drag and self-weight.

A standard (Morison) drag formulation is adopted. Let C
��

and C
��

denote drag
coe$cients associated with tangential drag (skin friction) and normal drag respectively.
Then, the drag per unit length

h"h
�
a
�
#h

�
a
�

(27)



Figure 4. Initial and boundary conditions for an overhead cast. Initial conditions describe the #y line at rest in
a perfect back cast (solid curve). The boundary condition at s"0 de"nes the prescribed motion of the rod tip. The
boundary condition at s"l de"nes the equations of motion of the attached #y.
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has components

h
�
"!�

�
�
�
D(s)�C

��
v
�
�v

�
�, h

�
"!�

�
�
�
D (s)C

��
v
�
�v

�
�, (28, 29)

where �
�
is the density of air. Adding now the tangential and normal components of the

weight of the #y line per unit length provides

F
�
"h

�
#�

�
gA(s) sin(�), F

�
"h

�
#�

�
gA(s) cos(�). (30, 31)

2.6. INITIAL AND BOUNDARY CONDITIONS

The de"nition of the #y line model is now completed by adding the initial and the
boundary conditions. The forward cast of an overhead cast is modelled starting at rest from
a perfectly laid out back cast as shown in Figure 4. Hence, the initial conditions are

v
�
(s, 0)"0, v

�
(s, 0)"0, �(s, 0)"�,

��

�t
(s, 0)"0. (32}35)

From these initial conditions, the rod tip is accelerated to the left through the forward
stroke of the overhead cast as illustrated in Figure 4. The velocity of the rod tip de"nes the
boundary conditions at this end of the #y line (s"0). The shape of the rod tip path and the
velocity along this path must be known a priori to provide boundary conditions to the #y
line model studied in this paper. They are estimated from video footage [16] for a typical
cast (i.e., for the coupled system composed of the #y line and the #y rod). Thus, while the #y
rod is not modelled herein, its in#uence (including its #exibility) is captured in thismeasured
boundary condition. As depicted in Figure 4, the path of the tip of the #y rod is nominally
straight and horizontal due to the considerable bending of the #y rod as it accelerates the #y
line. The rod is then abruptly decelerated to a stop and the rod unloads in the fundamental
bending mode creating additional rod tip/#y line speed. During this unloading, the rod tip
path is likely to dip downwards slightly and this e!ect is exaggerated in Figure 4. Thus, the
boundary conditions at this end are

v
�
(0, t)"g

�
(t), v

�
(0, t)"g

�
(t), � (0, t)"0, (36}38)

where g
�
(t) and g

�
(t) are the assumed-known velocity components of the rod tip and where

a hinged connection to the #y rod is assumed. The boundary conditions at the opposite end
(s"l) describe the equations of motion of the attached #y. We model the #y as a particle



Figure 5. Free-body diagram of the #y. F"F
�
a
�
#F

�
a
�
includes the #y weight and air drag. f"f

�
a
�
#f

�
a
�

includes the tension and shear reactions from the attached #y line.
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subject to tension from the #y line, self-weight, and air drag. Linear and angular momentum
balances for the #y, depicted as a free body in Figure 5, lead to

m
��

�v
�

�t
(l, t)!

��

�t
(l, t)v

�
(l, t)�"m

�
g sin(� (l, t))!�

�
�v�

�
(l, t)#v�

�
(l, t)v

�
(l, t)!f

�
(l, t),

(39)

m
��

�v
�

�t
(l, t)#

��

�t
(l, t)v

�
(l, t)�"m

�
g cos(� (l, t))!�

�
�v�

�
(l, t)#v�

�
(l, t)v

�
(l, t)!f

�
(l, t),

(40)

�(l, t)"0. (41)

Here, m
�
is the mass of the #y, and �

�
"�

�
�
�
A

�
C

��
in which A

�
is the projected area of the

#y, and C
��

is the drag coe$cient for the #y.

3. NUMERICAL ALGORITHM

The non-linear initial-boundary-value problem above is solved using space}time "nite
di!erencing. The algorithm is a modi"cation of that developed in references [12, 14]. The
key steps in the algorithm are as follows.

� Transform the space}time problem (21)}(26) into a spatial two-point boundary-value
problem using "nite di!erencing in time.

� Approximate the resulting non-linear di!erential equations as a system of linear
di!erential equations using a "rst order Taylor series expansion to obtain a linear
two-point boundary-value problem.

� Transform the linear two-point boundary-value problem into a linear initial-value
problemwhich can then be solved e$ciently and then iterate for non-linear corrections by
updating the Taylor series expansion above.

These steps are detailed below.
System (21)}(26) can be rewritten as

�y

�s
"F�y(s, t),

�y

�t
(s, t),

��y

�t�
(s, t)�, (42)
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h
��y (0, t),

�y

�t
(0, t)�"0, h

� �y (l, t),
�y

�t
(l, t)�"0, (43, 44)

where h
�
(respectively h

�
) represents the three boundary conditions (36)}(38) (respectively

equations (39)}(41)) and y(s, t) is the vector of unknowns

y (s, t)"[v
�

v
�

� � f
�

f
�
]�. (45)

Expressing (�y/�t)(s, t) and (��y/�t�)(s, t) in terms of known or guessed quantities at the
previous time step (tL !�t) and current time step tL using "nite di!erencing removes the time
dependence and yields a discrete non-linear two-point boundary-value problem at each
time step. The time discretization employed is a stable, implicit integration scheme using
a Newmark-like method. The time derivative of a scalar quantity z is approximated by

�z
�t

(s, tL )"
z(s, tL )!z (s, tL !�t)

��t
!�

�z
�t

(s, tL !�t) (46)

in which � and � are integration parameters that are related by

�"

(1!�)
�

. (47)

Note that the choice �"1 and �"0 reduces equation (46) to backwards di!erencing. In
reference [14], Sun showed that numerical damping is introduced when using a backward
di!erence scheme and that numerical damping is removed by choosing �"0)5. In this study,
we will use �"0)6 because adding small numerical damping aids numerical convergence but
also remains quite small relative to the physical damping associated with air drag.
The "nite di!erencing strategy for the acceleration vector is di!erent from the one

employed by Sun in [12]. Indeed, the strategy in [12] is limited to small rotations and
accelerations of the local reference frame. In #y casting, the rotations and accelerations are
large enough that Sun's method leads to a 200% error in the acceleration when the
acceleration peak is reached in the forward cast. Herein, discretization (46) is applied to the
components of the acceleration vector in the inertial reference frame. Using equation (1)
and the fact that the transformation matrix L is orthogonal, the velocity components
(XQ

�
, XQ

�
) in the inertial reference frame are related to those (v

�
, v

�
) in the local reference

frame through

�
XQ

�
XQ

�
�"L��

v
�
v
�
�. (48)

Taking the time derivative of equation (48) and using the fact that theL is orthogonal yields

�
�v

�
�t

(s, tL )

�v
�

�t
(s, tL )�"L �

XQ
�
(s, tL )!XQ

�
(s, tL !�t)

��t
!�XG

�
(s, tL !�t)

XQ
�
(s, tL )!XQ

�
(s, tL !�t)

��t
!�XG

�
(s, tL !�t) �!L

�L�

�t �
v
�
(s, tL )

v
�
(s, tL )�. (49)
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Using the time discretization above, equations (42)}(44) can be rewritten in the following
forms:

dy

ds
(s, tL )"F(y (s, tL !�t), y(s, tL )), (50)

h
�
(y(0, tL ))"0, h

�
(y(l, tL ))"0, (51, 52)

resulting in a non-linear two-point boundary-value problem.
Let y be the exact solution of equations (50)}(52) and y* be an approximate solution.

Equations (50)}(52) can be expanded in a "rst order Taylor series about the approximate
solution y* as follows:

dy

ds
(s, tL )"F(y*(s, tL ))#�

�F
�y �y*��� �( �

(y(s, tL )!y*(s, tL )), (53)

h
�
(y* (0, tL ))#�

�h
�

�y �y*�	� �( �

(y (0, tL )!y* (0, tL ))"0, (54)

h
�
(y*(l, tL ))#�

�h
�

�y �y*��� �( �

(y (l, tL )!y*(l, tL ))"0. (55)

Here, [�F/�y]y*��� �( �
denotes the 6�6 Jacobian of system (50) evaluated at the approximate

solution y*(s, tL ), [�h
�
/�y]y*�	� �( �

is the 3�6 matrix having components (�(h
�
)
	
/�y



) evaluated

at y*(0, tL ), and [�h
�
/�y]y*��� �( �

is the 3�6 matrix having components (�(h
�
)
	
/�y



) evaluated at

y*(l, tL ).
Equations (53)}(55) are rewritten as

dy

ds
(s, tL )"A*(s, tL )y(s, tL )#B*(s, tL ), (56)

C*
�
(t)y(0, tL )#D*

�
(tL )"0, C*

�
(t)y(l, tL )#D*

�
(tL )"0, (57, 58)

where

A*(s, tL )"�
�F
�y �y*��� �( �

, B*(s, tL )"F(y*(s, tL ))!�
�F
�y �y*��� �( �

y*(s, tL ),

C*
�
(tL )"�

�h
�

�y�y*�	� �( �

, D*
�
(tL )"h

�
(y* (0, tL ))!�

�h
�

�y�y*�	� �( �

y*(0, tL ),

C*
�
(tL )"�

�h
�

�y �y*��� �( �

, D*
�
(tL )"h

�
(y*(l, tL ))!�

�h
�

�y �y*��� �( �

y* (l, tL ).
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The system (56)}(58) de"nes a two-point linear boundary-value problem for solution of
y(s, tL ) in an a$ne space of dimension 6. A solution of the form

y (s, tL )"y
�
(s, tL )#y

�
(s, tL )� (59)

is sought where y
�
(s, tL ) is a particular solution and y

�
(s, tL ) is a homogeneous solution. The

3�1 vector � in equation (59) contains the unknown constants of integration that will be
determined using the terminal end (s"l) boundary conditions. These solution components
satisfy the linear initial-value problems below.
The particular solution is a 6�1 vector that satis"es

dy
�

ds
(s, tL )"A* (s, tL )y

�
(s, tL )#B*(s, tL ), (60)

y
�
(0, tL )"[g

�
(tL )g

�
(tL ) 0 0 0 0]�. (61)

The homogeneous solution y
�
(s, t) is a 6�3 matrix that satis"es

dy
�

ds
(s, tL )"A*(s, tL )y

�
(s, tL ), y

�
(0, tL )"

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

�

. (62, 63)

Note that the boundary conditions at the starting end (s"0) are always satis"ed, regardless
of the choice of �.
The two initial-value problems de"ned by equations (60)}(63) are integrated separately.

The unknown vector � is chosen so that the solution vector y (s, tL ) satis"es the terminal end
boundary conditions

C*
�
(tL ) (y

�
(l, tL )#y

�
(l, tL )�)#D*

�
(t( )"0. (64)

Thus, � satis"es

�"![C*
�
(tL )y

�
(l, tL )]
� (C*

�
(tL )y

�
(l, tL )#D*

�
(tL )). (65)

One drawback of the method above is that, since all the values of y (0, tL ) are not known
a priori, particular and homogeneous solution components (of exponential type in space)
may rapidly grow leading to unrealistically large solution components prior to reaching the
terminal end (s"l). A suppression method [12, 14, 15] is now introduced to control the
growth of these solution components. The method follows from the fact that the &&true''
solution is bounded, and that we must guess the unknown values of �, f

�
, and f

�
at the

starting end (s"0).
During the simulation, the expected order of magnitude of the variables is known and can

be used to check the solution size at &&suppression points''. If a variable exceeds its expected
range, this signals a poor guess of the unknown values for �, f

�
, and f

�
at the starting end

(s"0). These three variables (�, f
�
, and f

�
) are monitored for suppression as detailed in

Appendix A.
We now have a method to integrate the linearized, two-point boundary-value problem

(56)}(58) starting from the solution at the previous time step. At the current time step, we
iterate on the linearized boundary-value problem by updating the solution using this
problem from the previous iterate. The iterations stop when the relative di!erence between



Figure 6. Schematic of the example double-tapered #y line.

TABLE 1

¹aper table for line D¹-5-F

Section name Tip Front taper Belly Front taper Tip

Length of the section (m) 0)152 1)78 23)88 1)78 0)152
Diameter of the section (m) 0)889�10
� * 1)041�10
� * 0)889�10
�

TABLE 2

Data for -y casting example

Parameter Symbol Value Units

Bending sti!ness E 1)0�10�	 N/m�
Length of the #y line l 5 m
Density of the #y line �

�
1)158�10� kg/m�

Gravitational constant g 9)81 m/s�
Density of air �

�
1)29 kg/m�

Tangential drag coe$cient of the #y
line C

��
1

Normal drag coe$cient of the #y line C
��

0)01
Coarse time step �t

�
0)0075 s

Fine time step �t
�

0)0002 s
Spatial step �s 0)0033 m

Prescribed error �e 0)05
Mass of the #y m

�
0)000075 kg

Drag coe$cient of the #y C
��

1
Radius of the #y r

�
0)0075 m
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the results of two successive iterations is smaller than a stipulated error tolerance as
calculated by

�e"max
���	� � ���

�
�
	��
�
y
	
!y*

	
y*
	
���, (66)

where y designates the solution from the current iteration and y* the solution from the
previous iteration. In this manner, an approximate solution to the non-linear
boundary-value problem (50)}(52) is found prior to proceeding to the next time step.



Figure 7. Numerical calculation of a forward cast showing loop formation and loop propagation at eight
selected times; t"0)65, 0)69, 0)74, 0)80, 0)86, 0)94, 1)03, and 1)13 s.
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4. RESULTS

The model and numerical method described above are used to simulate an overhead cast
starting from a perfect back cast. An example #y line is selected to be a double-tapered
5 weight #oating line (DT-5-F). A schematic of the taper for this line is provided in Figure 6
and the taper information is given in Table 1. The length of the line used in the casts is 5 m
and this represents a short cast. The remainder of the parameters chosen for this example
are listed in Table 2. Table 2 also includes two parameters, a coarse time step �t

�
and "ne

time step �t
�
, that control the integration time stepping. An adaptive time step

�t"�t
�
!(�t

�
!�t

�
) �

sin(a (t!	))
a (t!	) �

�
(67)

is used to reduce computational e!ort as well as to insure numerical stability. Here, a and
	 are two parameters that determine the transition from the coarse to the "ne time step.
Starting from the back cast, the integration begins using the coarse time step and the #y line
deforms only modestly as it accelerates along a nearly straight-line path. Near the end of
this straight-line acceleration, the rod tip dips slightly below the horizontal as the rod
unloads in its fundamental bending mode of vibration. This motion corresponds to a very
rapid deceleration of the rod tip (what a #y caster calls a &&stop'') that initiates large
deformation of the #y line and the formation of a loop. The "ne time step is used to resolve
this phase of the cast as well as the propagation of the loop thereafter.



Figure 8. Time history of the velocity components at the extreme ends of the #y line:**, rod tip end of the #y
line; ) - ) - ) -, #y end of the #y line.
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It is also important to note that the initial conditions are smooth (they satisfy the
equations of motion) and that the model includes the bending sti!ness of the #y line. By
contrast, the initial conditions proposed in [4}6] have discontinuities in the #y line
curvature (bending was not considered) and these would necessarily generate (unrealistic)
bending waves as the simulation proceeds.
The main characteristics of the forward cast will be presently discussed for a benchmark

cast. Then, we will highlight how this cast is in#uenced by two sample e!ects, namely the
added drag from an attached #y, and the shape of the rod tip path.

4.1. CHARACTERISTICS OF THE FORWARD CAST

Figure 7 shows the prediction of a forward cast including the formation and propagation
of the loop for eight selected times. The loop is initiated at the abrupt &&stop'' of the rod tip
and then freely propagates to the left under the action of air drag and line tension, bending
and weight.
A fundamental understanding of the loop formation and propagation process can be

gained by studying Figures 8 and 9 which illustrate the velocity components and tension at
the extreme ends of the #y line. Note that the velocity components shown in Figure 8 for the
rod tip end of #y line de"ne boundary conditions (36) and (37) for an approximate
rod tip motion. Three distinct phases of #y line response can be clearly identi"ed in these
"gures.



Figure 9. Time history of the #y line tension at the extreme ends of the #y line:**, rod tip end of the #y line;
) - ) - ) -, #y end of the #y line.
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The "rst phase, from t"0 s to approximately t"0)5 s is characterized by a nearly
straight-line motion of the #y line as it accelerates from rest in the back cast. FromFigure 8,
note that the vertical velocities of the extreme ends of the #y line are nearly zero during this
time interval, and that the horizontal velocities are nearly identical and increase smoothly
and rapidly from zero to approximatively 30 m/s at the conclusion of this phase.
Simultaneously, appreciable tension develops at the rod tip end of the #y line and to a lesser
degree at the #y end of the #y line as depicted in Figure 9. Thus, during this "rst phase, the
#y line behaves essentially like a rigid body accelerated horizontally at the rod tip. The
second phase, which lasts from approximately t"0)5 to 0)7 s corresponds to the abrupt
deceleration of the rod tip as it dips slightly below the horizontal. Large velocity
di!erentials are now created between the extreme ends of the #y line as shown in Figure 8.
In particular, the rod tip end of the #y line is brought to rest while the #y end continues to
move horizontally with appreciable speed while simultaneously falling with modest speed.
During this phase, the tension in the #y line at the rod tip drops signi"cantly (becoming
compression), while the tension at the #y end is slightly reduced. The large velocity
di!erences at the extreme ends and the sharp drop in line tension at the rod tip are key
elements in loop formation. The remainder of the cast beyond t"0)7 s de"nes the third
phase during which the loop propagates freely to the left while slowly falling under the
action of gravity. During this phase, the horizontal velocities of the extreme ends decrease as
energy is dissipated by air drag. The vertical velocity for the #y end achieves a maximum at
the turnover of the loop at about t"1 s, as expected.



Figure 10. In#uence of #y drag: (a) numerical calculation of a cast without a #y; (b) numerical calculation of
same cast with a #y.
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4.2. INFLUENCE OF THE FLY DRAG

The cast above includes the e!ect of a medium (size 12) dry #y with the assumed mass,
drag, and radius (characteristic dimension) reported in Table 2. At "rst glance, one might be
tempted to ignore the in#uence of an attached #y altogether. However, #y casters have long
observed that the additional weight and drag produced by an attached #y can materially
alter a cast. This observation is con"rmed by the results illustrated in Figure 10.
Figure 10(a) illustrates a cast computed without the #y while Figure 10(b) shows the very

same cast with the #y. All other parameters for these two casts are identical, and gravity is
ignored in both so that conclusions can be drawn speci"cally about the role of added #y
drag. Inspection of these two results reveals a signi"cant role played by #y drag during loop
propagation and "nal loop turnover (the &&third phase'' described above). Without a #y, the
loop in Figure 10(a) ultimately collapses upon itself and would likely tangle. By contrast,
with a #y, the loop in Figure 10(b) propagates smoothly (and realistically) to the left where it
"nally turns over at the conclusion of the forward cast.
Figure 11 shows the time histories of the velocity components for the #y end of the #y line

for the same two casts, while Figure 12 shows the corresponding #y line tension at the rod
tip end. Note from Figure 11 that, without a #y, oscillations appear in the vertical and
horizontal velocity components. These oscillations describe the signi"cant whipping
motion of the (bare) end of the #y line during the "nal stages of loop propagation and
turnover that would likely result in tangling. By contrast, with a #y, these velocity
components vary rather smoothly with time. Equally important, observe from Figure 12
that the peak #y line tension at the rod tip end increases by approximately 25% upon the



Figure 11. Time history of the velocity components at the #y end of the #y line with and without #y: ) - ) - ) -, cast
without #y; **, same cast with an attached #y.
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addition of a #y. This tension peak occurs at the conclusion of the &&"rst phase'' and the
increase here derives from the added (signi"cant) drag force of the #y that serves to further
tension the #y line during this phase of casting.

4.3. INFLUENCE OF THE ROD TIP PATH

Arguably the greatest factors in#uencing #y casting are those that control the path
followed by the tip of the #y rod. The shape of this path, as well as the speed along it, are the
means by which a #y caster controls the motion of the #y line. Consequently,
much attention in #y casting instruction concentrates on the rod tip path; see, for example,
[1, 2].
The signi"cance of the rod tip path in #y casting dynamics is captured in boundary

conditions (36) and (37) which de"ne the velocity components of the rod tip. These
boundary conditions are also the most challenging quantities to specify in this model of #y
line dynamics as the authors remain unaware of any published data for the velocity of the
rod tip. As a start, we have analyzed video images of #y casting featured in reference [16]
and have estimated both the shape of a typical path as well as the speed along it. We now
describe how reasonably small changes to this estimated path can materially alter the
resulting loop. Figure 13 illustrates two assumed rod tip paths. Each begins with a straight
horizontal trajectory that ends with a stop below the horizontal. For the path denoted as
�1, the &&dip'' below the horizontal is nearly linear while for the path denoted as �2, the
&&dip'' is rounded. The di!erences in the shape of these paths are responsible for the



Figure 12. Time history of the tension at the rod tip with and without an attached #y: ) - ) - ) -, cast without #y;
**, same cast with an attached #y.
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markedly di!erent loop shapes shown in Figure 14. Path �1 produces the loop shown in
Figure 14(a) that has a leading edge with a positive slope and with the greatest curvature
near the bottom. By contrast, path �2 produces the loop shown in Figure 14(b) with
a leading edge having a negative slope and with the greatest curvature near the top. This
particular loop, sometimes referred to as a climbing loop, is often very desirable and may be
a hallmark of an expert caster. The two paths also lead to two qualitatively distinct tensions
in the #y line as shown in Figure 15. Note that for path �1, the #y line (at the rod tip)
experiences compression during two time intervals as opposed to the single time interval for
path �2. These two compression intervals are responsible for the two &&lobes'' that appear
in the loop for path �1; refer Figure 14(a).

5. SUMMARY AND CONCLUSION

This paper establishes a continuummodel for #y line dynamics and a requisite numerical
algorithm to simulate #y casting. A planar elastica is introduced to model the large,
non-linear dynamic deformations of the #y line when forming a propagating loop. The
model, which readily incorporates the taper of the #y line, captures the e!ects of #y line
tension, drag, self-weight, and bending. The associated boundary conditions capture the
e!ects of the imposed motion at the tip of the #y rod at one end of the #y and the forces
acting upon the attached #y at the other end. The numerical algorithm is based upon that in
[12, 14] with improvements that address the rapid rotations and accelerations experienced
by the #y line during loop formation and propagation.



Figure 13. Two example paths for the rod tip: ) - ) - ) -, path �1; **, path �2.
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The model and numerical algorithm are employed to study the forward cast during
standard overhead casting. The initial conditions describe a perfectly laid out back cast
fromwhich the forward cast is initiated. Inspection of simulated results reveals three distinct
phases of #y line response during the forward cast. These include the nearly rigid-body
acceleration of the #y line from the back cast, the formation of a loop following the abrupt
stop of the rod tip, and the propagation and eventual turnover of the loop. The "rst phase is
characterized by very rapid but smooth increases in #y line tension and speed with little to
no #exible-body deformation of the #y line. The abrupt stop of the rod tip initiates the
second phase that is characterized by a dramatic drop in the tension and speed of the #y line
at the rod tip. The resulting velocity di!erence between the extreme ends of the #y line
generates rapid rotations (#exible-body deformation) of the line during the creation of
a loop. During the third phase, this loop propagates along the #y line under the in#uence of
line tension and air drag while falling slightly under the in#uence of gravity.
The model is further exercised to understand the in#uence of two sample e!ects on #y

casting, namely the drag created by the attached #y and the shape of the path of the rod tip.
The drag created by the attached #y servers to further tension the #y line during the "rst
phase of the forward cast and to maintain tension and to dissipate #y line oscillations
during the third phase, and particularly during the critical loop turnover. The shape of the
path described by the rod tip substantially controls the shape of the resulting loop, an
observation well known to casting experts. The examples presented herein reinforce this
conclusion by illustrating two qualitatively di!erent loops that form as a result of an
arguably modest change to the rod tip path. This sensitivity underscores the sheer amount
of practice required to develop highly skilled casting techniques [1, 2].



Figure 14. In#uence of rod tip path: (a) numerical calculation of cast using path�1; (b) numerical calculation of
cast using path �2.

Figure 15. Time history of the #y line tension at the rod tip end: ) - ) - ) -, for path �1; **, for path �2.
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The objective of this paper is to establish a mathematical model and numerical algorithm
for simulating the dynamics of #y casting. This objective is aligned with the goal of fostering
innovations in #y casting equipment design and in #y casting technique and instruction
using computer-based simulation [3]. The sample results presented here are limited, but
they are also representative of numerous other studies that could be conducted to support
this goal.
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APPENDIX A: DETAILS OF SUPPRESSION METHOD

Let


h��"[y�
�
(s, tL )y�

�
(s, tL )y�

�
(s, tL )]�, [H]"[y�

�
(s, tL )y�

�
(s, tL )y�

�
(s, tL )]� (A.1, A.2)

denote the components of the particular and homogeneous solutions that are monitored for
suppression. In particular, y	

�
(s, tL ) indicates the ith component of the vector y

�
(s, tL ) and

y	
�
(s, tL ) represents the 3�1 vector that is obtained by taking the ith row of the matrix y

�
(s, tL ).
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Let 
h�, k"1, 2, 3 be the columns of the matrix [H]. The solutions 
h�, k"0, 1, 2, 3 are
suppressed at the suppression points by comparing their values to prescribed limits:


p��"�
p
�	

p
�	

p
�	
� , 
p��"�

p
��
0

0 � , 
p��"�
0

p
��
0 � , 
p��"�

0

0

p
��
� . (A.3)

These limits are satis"ed by imposing

[H]
��#
h�"
p�, k"0, 1, 2, 3, (A.4)

where 
�� contains the suppression coe$cients for the kth solution.
Solving for the suppression coe$cients yields


��"[H]
�(
p�!
h�), k"0, 1, 2, 3, (A.5)

from which the recombined, suppressed particular and homogeneous solutions are formed
as

y
��
(s, tL )"y

�
(s, tL )#y

�
(s, tL )��, (A.6)

y	
��
(s, tL )"y	

�
(s, tL )#y

�
(s, tL )�	, i"1, 2, 3, (A.7)

where y
��
(s, tL ) is the new particular solution obtained after suppression, y

�
(s, tL ) is the

particular solution before suppression, y
�
(s, tL ) is the matrix containing the homogeneous

solutions, �� is the suppression coe$cient for the suppression of the particular solution,
y	
��
(s, tL ) is the ith homogeneous solution obtained after suppression, and �	 is the suppression

coe$cient for the suppression of the homogeneous solution.


	1. INTRODUCTION
	Figure 1
	Figure 2

	2. CONTINUUM MODEL
	Figure 3
	Figure 4
	Figure 5

	3. NUMERICAL ALGORITHM
	Figure 6
	TABLE 1
	TABLE 2
	Figure 7

	4. RESULTS
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12

	5. SUMMARY AND CONCLUSION
	Figure 13
	Figure 14
	Figure 15

	ACKNOWLEDGMENTS
	REFERENCES
	APPENDIX A: DETAILS OF SUPPRESSION METHOD

